Model-free Source Identification

Velimir V. Vesselinov Boian S. Alexandrov

Los Alamos National Laboratory

AGU Fall Meeting, San Francisco, December 15, 2014 Unclassified: LA-UR-14-29163

Blind source separation

Non-negative Matrix Factorization

Data oo Results

Water-level data

Blind source separation

Non-negative Matrix Factorization

Data Do Results 00000000000

Well locations

- Identification of the physical sources (forcings) causing spatial and temporal variation of state variables
- Variations can be caused by various natural or anthropogenic sources
- The identification of forcings (the source identification) can be crucial for conceptualization and model development
- If the forcings are successfully "unmixed" from the observations, decoupled physics models may then be applied to analyze the propagation of each forcing independently

Source Identification Methods

- Statistical methods ...
- Model inversion ...
- Blind Source Separation (BSS) ...
 - unsupervised
 - objective
 - adaptive
 - machine-learning algorithm
 - model-free inversion
 - Jutten and Herault, 1991, Zarzoso and Nandi, 1999

Blind Source Separation (BSS)

► Retrieve the unknown forcing signals (sources) S_{p×r} that have produced observation records, H_{p×m} with unknown noise (measurement errors) E_{p×m}:

$$\mathbf{H}_{p \times m} = \mathbf{S}_{p \times r} \mathbf{A}_{r \times m} + \mathbf{E}_{p \times m},$$

- $A_{r \times m}$ is unknown "mixing" matrix
- m is the number of the recording sensors (observation wells)
- ► r is the number of unknown signals (m > r)
- ► *p* is the number of discretized moments in time at which the signals are recorded at the sensors
- The problem is ill-posed and the solutions are non-unique
- BSS performs optimization with constraints, such as:
 - maximum variability
 - statistical independence
 - component non-negativity
 - smoothness
 - simplicity, etc.

Blind source separation methods

- ICA: Independent Component Analysis
 - Maximizing the statistical independence of the retrieved forcings signals in S (i.e. the matrix columns are expected to be independent) by maximizing some high-order statistics for each source signal, such as the kurtosis or negentropy (negative entropy).
 - The main idea behind ICA is that, while the probability distribution of a linear mixture of sources in H is expected to be close to a Gaussian (the Central Limit Theorem), the probability distribution of the original independent sources is expected to be non-Gaussian.
- NMF: Non-negative Matrix Factorization
 - ► Non-negativity constraint on the original sources in S and their mixing components in A
 - As a result, the observed data are representing only additive signals that cannot cancel mutually.
 - Additivity and non-negativity requirements lead to a sparseness in both the signal S and mixing A matrices

Non-negative Matrix Factorization (NMF)

- \blacktriangleright Generate random initial guesses for $\widetilde{\mathbf{S}}$ and $\widetilde{\mathbf{A}}$
- Update $\widetilde{\mathbf{S}}$ and $\widetilde{\mathbf{A}}$ (η is a small arbitrary positive constant):

$$a_{j,i}^{*} \leftarrow a_{j,i} \frac{\left[\tilde{\mathbf{S}}^{\mathbf{T}}\mathbf{H}\right]_{j,i}}{\left[\tilde{\mathbf{S}}^{\mathbf{T}}\tilde{\mathbf{S}}\tilde{\mathbf{A}}\right]_{j,i} + \eta}, \qquad s_{q,j}^{*} \leftarrow s_{q,j} \frac{\left[\mathbf{H}\tilde{\mathbf{A}}^{*\mathbf{T}}\right]_{q,j}}{\left[\tilde{\mathbf{S}}\tilde{\mathbf{A}}^{*}\tilde{\mathbf{A}}^{*\mathbf{T}}\right]_{q,j} + \eta}$$

Loop till some convergence criteria are satisfied (*e.g.*, based on objective function and/or number of iterations).

- We propose an improved NMF coupled with k-means analysis (we call it NMFk)
- Perform a series of NMF analyses for a series of different predetermined initial guesses for the number of sources (r = 1, 2, ..., m).
- For each *r* value, perform NMF runs with a series (*n*) of different random initial guesses S̃ and à (the total number of solutions is m*(m+1)/2 × n).
- ► All the obtained solutions for given r (r × n) are k-means clustered based on the cosine similarity between the estimated sources using k-means analysis where k = r (k-means clustering is performed m times)
- ► The optimal number of sources is identified based on the Objective function *O* and Silhouette width *C*

► Objective function *O* based on Frobenius norm:

$$\mathcal{O} = \frac{1}{2} \left(\left\| \mathbf{H} - \widetilde{\mathbf{S}} * \widetilde{\mathbf{A}} \right\|_F \right)^2 = \sum_{i=1}^m \sum_{q=1}^p \left(h_{q,i} - \sum_{j=1}^r \widetilde{s}_{q,j} \widetilde{a}_{j,i} \right)^2$$

Blind source separation	Non-negative Matrix Factorization	Data	Results	Conclusions
000000	00000	00	000000000000000	00

NMFk criteria: Silhouette width

Cosine distance (cosine similarity) ρ representing the similarity between any two forcing signals j₁ and j₂ (s̃_{q,j1} and s̃_{q,j2}):

$$\rho(j_1, j_2) = 1 - \frac{\sum_{q=1}^p \tilde{s}_{q, j_1} \tilde{s}_{q, j_2}}{\sqrt{\sum_{q=1}^p (\tilde{s}_{q, j_1})^2} \sqrt{\sum_{q=1}^p (\tilde{s}_{q, j_2})^2}}$$

► Silhouette value (c_d) for each solution based on the cosine similarity

$$c_{d} = \frac{R_{in,d} - R_{out,d}}{max \left[R_{in,d}, R_{out,d}\right]}, \ \forall \ d = 1, ..., n \times r$$

- $R_{in,d} = E\langle \rho(j_{in}, j_d) \rangle$ similarity with solutions within the cluster
- ► $R_{out,d} = E\langle \rho(j_{out}, j_d) \rangle$ similarity with solutions outside the cluster
- If c_d → 1, the element is appropriately clustered; if c_d ≈ 0, the element is between two clusters (if c_d → −1, the clustering failed).

Silhouette width C of k-means results for a given r is:

$$C = E\langle c_d \rangle, \ d = 1, ..., n \times r$$

► The optimal number of sources is identified based on the Objective function *O* and Silhouette width *C* for a given *r*.

Well locations

Water-level data

Blind source separation

Non-negative Matrix Factorization

Data ○● Results

Stability

Blind	source	separation
0000	000	

Non-negative Matrix Factorization

Data

Results

Signals

Blind source separation

Non-negative Matrix Factorization

Data

Results

Signal #1 - Barometric pressure

Blind source separation

Non-negative Matrix Factorization

oata

Results

Signal #2 - PM-4 water-supply pumping

Blind source separation

Non-negative Matrix Factorization

Data

Results ○○○○○○●○○○○○

Signal #3 - All the other pumping wells (without PM-4)

Blind source separation

Non-negative Matrix Factorization

oata

Results

NMFk can be extended to identify the location of the sources (pumping wells) as well ...

Blind source separation	Non-negative Matrix Factorization	Data
000000	00000	00

Conclusions

Results

Synthetic test problem (based on the LANL site)

Synthetic test problem: Water-level input

R-15

Time (d)

R-28

R-43

R-44

B-61

Blind source separation

Non-negative Matrix Factorization

Results

Synthetic test problem: Water-level matches

Time (d)

B-35a

R-43

R-45

Time [d]

R-50

Blind source separation

Non-negative Matrix Factorization

oata

Results ○○○○○○○○○○○●○

Synthetic test problem: Estimated source locations

- NMFk combines the strengths of standard NMF (Non-negative Matrix Factorization) and k-means clustering for characterization of unknown forcing signals in observed state variables
- ▶ NMFk can be applied to unmix transients in groundwater levels
- NMFk can be applied to find the source locations
- Additional work is needed to add known forcing signals (e.g. linear decline) in the analyses
- Future work can address uncertainty associated with estimated forcing signals
- Future work will also provide coupling between NMFk with physics-based inverse models

Thank you!

- Alexandrov & Vesselinov, Blind source separation for groundwater level analysis based on non-negative matrix factorization, Water Resources Research, doi: 10.1002/2013WR015037, 2014.
- NMFk is coded in Julia

Blind source separation

Non-negative Matrix Factorization

Data 00 Results